M1. (a) (i) 2-methylpropan-2-ol (1) OR the second one

(ii) Dehydrating agent: 
$$\stackrel{\text{conc} H_2 \text{ SO}_4 \text{ OR } \text{ conc} H_3 \text{ PO}_4 \text{ OR } \text{ Al}_2\text{ O}_3}{\underset{\text{C}H_3 \longrightarrow C}{\overset{\text{C}H_3}{\overset{\text{C}H_3} \longrightarrow C}} \underbrace{\underset{\text{C}H_3 \longrightarrow C}{\overset{\text{C}H_3}{\overset{\text{C}H_3} \xrightarrow{\text{C}H_2 + H}_2\text{O}}}_{\underset{\text{O}H}{\overset{\text{C}H_3}{\overset{\text{C}H_3} \xrightarrow{\text{C}H_2 + H}_2\text{O}}} (1)$$
  
Equation:  
Allow C\_4H\_9OH in equation provided RHS is correct  
if b(i) is blank, b(ii) equation must be full for credit  
i.e. NOT C\_4H\_9OH

Mark consequential on b(i)

| ~   |
|-----|
|     |
| -   |
| - 7 |
| ~   |

(b) (i) *Isomer*: butan-2-ol OR <u>the fourth one</u> [look at name in table] wrong isomer = CE

Structure of the ketone:

(ii) *Isomer*: butan-1-ol OR <u>the first one</u> OR 2-methylpropan-1-ol OR <u>the third one</u> *[look at name in table]* 

> Wrong isomer = CE Structure of the aldehyde:



(iii)

|                                                                                                     |     | (11)                                                                                                                          |                                                       |                                               |                                                                          |                               |                     |  |
|-----------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------|-------------------------------|---------------------|--|
| Reagent                                                                                             |     | M1                                                                                                                            | Tollen's<br>(AgNO₃/NH₃)                               |                                               | Fehling's                                                                |                               |                     |  |
| Observation with ketone                                                                             |     | M2                                                                                                                            | Stays colourless<br>no change                         |                                               | stays blue<br>no change                                                  |                               |                     |  |
| Observation with aldehyde                                                                           |     | М3                                                                                                                            | Silver mirror<br>black ppt                            |                                               | <u>red solid</u><br>orange/ <u>red</u><br>brown/ <u>red</u><br>ppt/solid |                               |                     |  |
|                                                                                                     |     | Other inclu<br>K₂Cr₂O₂ / H<br>KMnO₄/H₂S<br>Schiff's<br>Benedict's<br>Wrong rea<br>No reagen<br>Penalise A                     | ude(*<br>$I_2SO_4$<br>SO_4<br>igent<br>it = C<br>AgNO | )<br>R<br>E<br>₃ [Ag(NH₃)₂] bu                | t allow                                                                  | M2 and M3 sequenti            | ally.               |  |
| (*) $K_2Cr_2O_7 / H_2SO_4$ acidified<br>KMnO <sub>4</sub> /H <sub>2</sub> SO <sub>4</sub> acidified |     | $_{2}Cr_{2}O_{7} / H_{2}SO_{4}$ acidified                                                                                     |                                                       | <u>etone</u>                                  | aldehyde                                                                 |                               |                     |  |
|                                                                                                     |     | c<br>r                                                                                                                        | orange<br>no change                                   | green                                         |                                                                          |                               |                     |  |
|                                                                                                     |     | l p<br>r                                                                                                                      | purple colou<br>no change (v. Pa                      |                                               | rless<br>ale pink)                                                       |                               |                     |  |
|                                                                                                     |     | Bene                                                                                                                          | edict'                                                | 's ≡ Fehling's                                | ;<br>V                                                                   | Schiff's colouless →<br>iolet | pink with CHO<br>זי |  |
|                                                                                                     | (c) | <i>Equation</i> : $CH_3CH_2CH_2CH_2OH$ (or $C_4H_9OH$ ) + 2[O] $\rightarrow CH_3CH_2CH_2COOH$ (or $C_3H_7COOH$ ) + $H_2O$ (1) |                                                       |                                               |                                                                          |                               |                     |  |
|                                                                                                     |     | Name of produc<br>Acce                                                                                                        | t: but<br>ept bu                                      | anoic acid <b>(1)</b><br><i>Itaneoic acid</i> |                                                                          |                               |                     |  |

2

7

[12]

M2. (a) (i) <u>addition</u> of water / steam (1) Ignore "to the reaction"

> (ii) Advantage: low technology renewable feedstock / resource allowed for use in drinks, perfumes considered to be green (1) any one

NOT "infinite" or "non-finite" resource

Disadvantage:

slow low yield significant land use has to be distilled labour intensive

any one Ignore yeast NOT (unqualified) batch production NOT impure product

3

(b) (i) Structure of aldehyde  $CH_3 - C \xrightarrow{\bigcirc} O$  H (1) NOT CH<sub>3</sub>CHO Structure of carboxylic acid  $CH_3 - C \xrightarrow{\bigcirc} O$   $CH_3 - C \xrightarrow{\bigcirc} O$   $CH_3 - C \xrightarrow{\bigcirc} O$   $CH_3 - C \xrightarrow{\bigcirc} O$  OH (1) NOT CH<sub>3</sub>CHO NOT CH<sub>3</sub>COOH

Penalise incorrect R group once

(ii) *Reagent*: sodium (/ potassium) dichromate (VI) (VI not essential) (1) M1

*Conditions*: acidified or sulphuric acid (1) Can be with reagent M2 (heat under reflux) (1) M3

Or correct formula for M1 and M2 M2 depends on M1 (but M2 correct from  $Cr_2O_7^{2-}$ ,  $K_2Cr_2O_7^{2-}$  etc M3 mark independent Credit KMnO<sub>4</sub> for M1 Ignore T and P for M2 (c) (i)  $H_3C - CH_3$   $H_3C - CH_3$ OH (1)

(ii) 
$$CH_3CH_2 - CH - CH_3$$
  
 $I = OH (1)$ 

2

5



(ii)





5

[15]

M4. (a) % O = 21.6 % (1) If % O not calculated only M2 available C  $\frac{64.9}{12}$  H  $\frac{13.5}{1}$  O  $\frac{21.6}{16}$  (1) = 5.41 = 13.5 = 1.35

> Ratio: 4 : 10: 1 (∴ C₄H<sub>10</sub>O) **(1)** If arithmetic error in any result lose M3 If percentage composition calculation done zero

3

4

(b) (i) *Type of alcohol*: Tertiary (1) *Reason*: No <u>hydrogen</u> atom on <u>central carbon</u> (1)



- (ii) Isomer 3 Isomer 4 Penalise missing bonds / incorrect bonds once per paper
- (c) (i) Aldehyde (1) Ignore named aldehydes or their structures, penalise wrong named compound

(ii)  $CH_3CH_2CH_2CH_2OH + [O] \rightarrow CH_3CH_2CH_2CHO + H_2O$  (1) Balanced (1)

> $C_4H_{10}O$  is OK as a reactant [O] can be over arrow  $C_3H_7CHO$  not accepted for product, but  $C_2H_3CH_2CHO$  is OK If use  $C_3$  or  $C_5$  compounds no marks in (ii) C.E of wrong alcohol

- (iii) Name Butanoic acid (1) Structure: CH₃CH₂CH₂COOH (1) mark conseq. or as stated
- (d) Advantage: Fast reaction OR pure product OR continuous process OR cheap on manpower OR high yield, 100% alcohol (1) Disadvantage: High technology OR ethene from non renewable source OR expensive equipment not just costly (1) Not answers based on fermentation



5



[18]